How do I pragmatically implement a Marketing Data Warehouse project?
Start with a few valuable use cases, such as campaign ROI, funnel KPIs, customer lifetime value. Define data sources, model, quality checks, access, data protection. Build ETL with monitoring and document definitions. Scale only after achieving stable results, not based on data volume. Strategic consulting: /mein-shop/p/strategische-beratung
Schema (copy & paste)
<script type="application/ld+json">{"@context": "https://schema.org", "@type": "Article", "@id": "https://www.lj-partner.com/wissensdatenbank/wie-setze-ich-ein-marketing-data-warehouse-projekt-pragmatisch-um#article", "headline": "Wie setze ich ein Marketing Data Warehouse Projekt pragmatisch um?", "description": "Starte mit wenigen, wertvollen Use Cases, z. B. Kampagnen ROI, Funnel KPIs, Kundenwert. Definiere Datenquellen, Modell, Qualitätschecks, Zugriffe, Datenschutz. ", "url": "https://www.lj-partner.com/wissensdatenbank/wie-setze-ich-ein-marketing-data-warehouse-projekt-pragmatisch-um", "inLanguage": "de", "author": {"@type": "Person", "name": "Lars Jurischka"}, "publisher": {"@type": "Organization", "name": "LJ & Partner", "url": "https://www.lj-partner.com"}}</script>